Comprehensive Test on Analysis

(1) Let μ be a real signed measure on $[0,1]$ with finite variation and $\mu([a, b])=0$ for any $0 \leq a \leq b \leq 1$. Show that $\mu \equiv 0$.
(2) Let Ω be a bounded domain in \mathbb{R}^{d}.
(a) If f is in $L^{p}(\Omega), p \geq 1$, then $f \in L^{q}(\Omega), 1 \leq q \leq p$.
(b) Let $\left\{f_{n}\right\}$ be bounded in $L^{p}(\Omega), p>1$. Furthermore, assume that $f_{n} \rightarrow f$ pointwise as $n \rightarrow \infty$. Prove that $f_{n} \rightarrow f$ (strongly) in $L^{q}(\Omega)$ for $\mathbf{1} \leq \mathbf{q}<\mathbf{p}$.
(3) Show that there is no non-negative (non-trivial) measure γ on an infinite dimensional Banach space with the property that $\gamma(a B)=a^{\beta} \gamma(B), a \geq 0$, and $\gamma(x+B)=\gamma(B)$ for all Borel set B and some constant $\beta>0$. In short, prove that such a $\gamma \equiv 0$. [Hint: You can use Riesz's lemma: Let X be a Banach space with subspace Z, Y, and Y be a proper closed subspace of Z. Then for $\theta \in(0,1)$ there exits $z \in Z$ with $\|z\|=1$ and $\inf _{y \in Y} \| z-y \mid \geq \theta$.]
(4) If f is a non constant entire function, prove that the image of f is dense in \mathbf{C}.
(5) Prove that $1 / z$ is not the uniform limit of a sequence of polynomials on the annulus $\{z: 1<|z|<2\}$.
(6) Let $\lambda>1$ and prove that the equation $\lambda-z-e^{-z}$ has exactly one zero on the right half plane $\{z: \Re z>0\}$.

Following are the answers:
(1) By Hahn decomposition we can write $\mu=\mu^{+}-\mu^{-}$. Then we have $\mu^{+}([a, b])=\mu^{-}([a, b])$. But closed intervals generate the Borel σ-algebra on $[0,1]$. Thus $\mu^{+}=\mu^{-}$implying $\mu \equiv 0$.
(2) It is easy to see that for any constant $M, f_{n} \chi_{\left\{\left|f_{n}\right|<M\right\}} \rightarrow f \chi_{\{|f|<M\}}$ almost surely. In fact, this convergence is in any L^{q} using dominated convergence theorem and the property that Ω is bounded. So it is enough to show that $\sup _{n}\left\|f_{n} \chi_{\left\{\left|f_{n}\right| \geq M\right\}}\right\|_{L^{q}} \rightarrow 0$ as $M \rightarrow \infty$. By assertion we have $\sup _{n}\left\|f_{n}\right\|_{L^{p}}<K$. Then

$$
\int_{\Omega}\left|f_{n}\right|^{q} \chi_{\left\{\left|f_{n}\right| \geq M\right\}} \leq \frac{1}{M^{p-q}} \int_{\Omega}\left|f_{n}\right|^{p} \leq \frac{K^{p}}{M^{p-q}} .
$$

(3) It is enough to show that the unit ball B_{1} has zero measure. If not, let $\gamma\left(B_{1}\right)>0$. Now use Riesz's lemma to generate a sequence x_{n} so that $\left\|x_{n}\right\|=1$ and $\left\|x_{i}-x_{j}\right\|>$ $\frac{1}{2}$. Then the balls $x_{i}+\frac{1}{4} B_{1}$ are disjoint and included in B_{2}. By the scaling property $\gamma\left(x_{i}+\frac{1}{4} B_{1}\right)=\frac{1}{4^{\beta}} \gamma\left(B_{1}\right)>0$. This shows $2^{\beta} \gamma\left(B_{1}\right)=\gamma\left(B_{2}\right) \geq \sum_{n} \gamma\left(x_{i}+\frac{1}{4} B_{1}\right)=\infty$. This is a contradiction.
(4) If possible assume that the image of f is not dense in \mathbf{C}. Then there exists a disc $D(a, \epsilon)$ which does not intersct the image so that $|f(z)-a|>\epsilon$ for all z. But then $1 /(f-a)$ is a bounded entire function and hence must be constant. This implies that f is also constant which is contradiction.
(5) If possible assume that the sequence of polynomials $\left\{p_{n}(z)\right\}$ converges uniformly on the given annulus to $1 / z$. Then for any circle C of radius between 1 and 2 , and oriented in the counterclockwise direction,

$$
\int_{C} p_{n}(z) d z \rightarrow \int_{C} \frac{1}{z} d z .
$$

By Cauchy's theorem, the integral on the left is zero for each n, whereas the integral on the right is $2 \pi i$, and thus we have a contradiction.
(6) By means of a conformal map we may think the right half plane as a disc and the imaginary axis as the boundary of the disc. Since on this axis, the linear part $\lambda-z=\lambda-i y$ strictly dominates the exponential part $e^{-z}=e^{-i y}$, By Rouches theorem $\lambda-z$ and $\lambda-z-e^{-z}$ have same number of zeros in the half plane.

