Comprehensive Test on Analysis

- (1) Let μ be a **real signed** measure on [0, 1] with finite variation and $\mu([a, b]) = 0$ for any $0 \le a \le b \le 1$. Show that $\mu \equiv 0$.
- (2) Let Ω be a bounded domain in \mathbb{R}^d .
 - (a) If f is in $L^p(\Omega), p \ge 1$, then $f \in L^q(\Omega), 1 \le q \le p$.
 - (b) Let $\{f_n\}$ be bounded in $L^p(\Omega), p > 1$. Furthermore, assume that $f_n \to f$ pointwise as $n \to \infty$. Prove that $f_n \to f$ (strongly) in $L^q(\Omega)$ for $\mathbf{1} \leq \mathbf{q} < \mathbf{p}$.
- (3) Show that there is no non-negative (non-trivial) measure γ on an **infinite dimensional** Banach space with the property that $\gamma(aB) = a^{\beta}\gamma(B), a \geq 0$, and $\gamma(x+B) = \gamma(B)$ for all Borel set *B* and some constant $\beta > 0$. In short, prove that such a $\gamma \equiv 0$. [Hint: You can use Riesz's lemma: Let *X* be a Banach space with subspace *Z*, *Y*, and *Y* be a proper closed subspace of *Z*. Then for $\theta \in (0, 1)$ there exits $z \in Z$ with ||z|| = 1 and $\inf_{y \in Y} ||z - y| \geq \theta$.]
- (4) If f is a non constant entire function, prove that the image of f is dense in \mathbf{C} .
- (5) Prove that 1/z is not the uniform limit of a sequence of polynomials on the annulus $\{z : 1 < |z| < 2\}.$
- (6) Let $\lambda > 1$ and prove that the equation $\lambda z e^{-z}$ has exactly one zero on the right half plane $\{z : \Re z > 0\}$.

Following are the answers:

- (1) By Hahn decomposition we can write $\mu = \mu^+ \mu^-$. Then we have $\mu^+([a, b]) = \mu^-([a, b])$. But closed intervals generate the Borel σ -algebra on [0, 1]. Thus $\mu^+ = \mu^-$ implying $\mu \equiv 0$.
- (2) It is easy to see that for any constant M, $f_n\chi_{\{|f_n| < M\}} \to f\chi_{\{|f| < M\}}$ almost surely. In fact, this convergence is in any L^q using dominated convergence theorem and the property that Ω is bounded. So it is enough to show that $\sup_n \|f_n\chi_{\{|f_n| \ge M\}}\|_{L^q} \to 0$ as $M \to \infty$. By assertion we have $\sup_n \|f_n\|_{L^p} < K$. Then

$$\int_{\Omega} |f_n|^q \chi_{\{|f_n| \ge M\}} \le \frac{1}{M^{p-q}} \int_{\Omega} |f_n|^p \le \frac{K^p}{M^{p-q}}$$

- (3) It is enough to show that the unit ball B_1 has zero measure. If not, let $\gamma(B_1) > 0$. Now use Riesz's lemma to generate a sequence x_n so that $||x_n|| = 1$ and $||x_i - x_j|| > \frac{1}{2}$. Then the balls $x_i + \frac{1}{4}B_1$ are disjoint and included in B_2 . By the scaling property $\gamma(x_i + \frac{1}{4}B_1) = \frac{1}{4^{\beta}}\gamma(B_1) > 0$. This shows $2^{\beta}\gamma(B_1) = \gamma(B_2) \ge \sum_n \gamma(x_i + \frac{1}{4}B_1) = \infty$. This is a contradiction.
- (4) If possible assume that the image of f is not dense in **C**. Then there exists a disc $D(a, \epsilon)$ which does not interset the image so that $|f(z) a| > \epsilon$ for all z. But then 1/(f a) is a bounded entire function and hence must be constant. This implies that f is also constant which is contradiction.
- (5) If possible assume that the sequence of polynomials $\{p_n(z)\}$ converges uniformly on the given annulus to 1/z. Then for any circle C of radius between 1 and 2, and oriented in the counterclockwise direction,

$$\int_C p_n(z) \, dz \to \int_C \frac{1}{z} \, dz.$$

By Cauchy's theorem, the integral on the left is zero for each n, whereas the integral on the right is $2\pi i$, and thus we have a contradiction.

(6) By means of a conformal map we may think the right half plane as a disc and the imaginary axis as the boundary of the disc. Since on this axis, the linear part $\lambda - z = \lambda - iy$ strictly dominates the exponential part $e^{-z} = e^{-iy}$, By Rouches theorem $\lambda - z$ and $\lambda - z - e^{-z}$ have same number of zeros in the half plane.